3.139 \(\int \frac {(g \cos (e+f x))^{3/2}}{(a+a \sin (e+f x))^{3/2} (c-c \sin (e+f x))^{3/2}} \, dx\)

Optimal. Leaf size=176 \[ \frac {2 (g \cos (e+f x))^{5/2}}{a f g \sqrt {a \sin (e+f x)+a} (c-c \sin (e+f x))^{3/2}}-\frac {2 (g \cos (e+f x))^{5/2}}{f g (a \sin (e+f x)+a)^{3/2} (c-c \sin (e+f x))^{3/2}}-\frac {2 g \sqrt {\cos (e+f x)} E\left (\left .\frac {1}{2} (e+f x)\right |2\right ) \sqrt {g \cos (e+f x)}}{a c f \sqrt {a \sin (e+f x)+a} \sqrt {c-c \sin (e+f x)}} \]

[Out]

-2*(g*cos(f*x+e))^(5/2)/f/g/(a+a*sin(f*x+e))^(3/2)/(c-c*sin(f*x+e))^(3/2)+2*(g*cos(f*x+e))^(5/2)/a/f/g/(c-c*si
n(f*x+e))^(3/2)/(a+a*sin(f*x+e))^(1/2)-2*g*(cos(1/2*f*x+1/2*e)^2)^(1/2)/cos(1/2*f*x+1/2*e)*EllipticE(sin(1/2*f
*x+1/2*e),2^(1/2))*cos(f*x+e)^(1/2)*(g*cos(f*x+e))^(1/2)/a/c/f/(a+a*sin(f*x+e))^(1/2)/(c-c*sin(f*x+e))^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.88, antiderivative size = 176, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, integrand size = 42, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.095, Rules used = {2852, 2842, 2640, 2639} \[ \frac {2 (g \cos (e+f x))^{5/2}}{a f g \sqrt {a \sin (e+f x)+a} (c-c \sin (e+f x))^{3/2}}-\frac {2 (g \cos (e+f x))^{5/2}}{f g (a \sin (e+f x)+a)^{3/2} (c-c \sin (e+f x))^{3/2}}-\frac {2 g \sqrt {\cos (e+f x)} E\left (\left .\frac {1}{2} (e+f x)\right |2\right ) \sqrt {g \cos (e+f x)}}{a c f \sqrt {a \sin (e+f x)+a} \sqrt {c-c \sin (e+f x)}} \]

Antiderivative was successfully verified.

[In]

Int[(g*Cos[e + f*x])^(3/2)/((a + a*Sin[e + f*x])^(3/2)*(c - c*Sin[e + f*x])^(3/2)),x]

[Out]

(-2*(g*Cos[e + f*x])^(5/2))/(f*g*(a + a*Sin[e + f*x])^(3/2)*(c - c*Sin[e + f*x])^(3/2)) + (2*(g*Cos[e + f*x])^
(5/2))/(a*f*g*Sqrt[a + a*Sin[e + f*x]]*(c - c*Sin[e + f*x])^(3/2)) - (2*g*Sqrt[Cos[e + f*x]]*Sqrt[g*Cos[e + f*
x]]*EllipticE[(e + f*x)/2, 2])/(a*c*f*Sqrt[a + a*Sin[e + f*x]]*Sqrt[c - c*Sin[e + f*x]])

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rule 2640

Int[Sqrt[(b_)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[b*Sin[c + d*x]]/Sqrt[Sin[c + d*x]], Int[Sqrt[Si
n[c + d*x]], x], x] /; FreeQ[{b, c, d}, x]

Rule 2842

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(c_) + (d_.)*sin[(e_
.) + (f_.)*(x_)]]), x_Symbol] :> Dist[(g*Cos[e + f*x])/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x]]), In
t[(g*Cos[e + f*x])^(p - 1), x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2
, 0]

Rule 2852

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) +
 (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*(g*Cos[e + f*x])^(p + 1)*(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^
n)/(a*f*g*(2*m + p + 1)), x] + Dist[(m + n + p + 1)/(a*(2*m + p + 1)), Int[(g*Cos[e + f*x])^p*(a + b*Sin[e + f
*x])^(m + 1)*(c + d*Sin[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, g, n, p}, x] && EqQ[b*c + a*d, 0] && E
qQ[a^2 - b^2, 0] && LtQ[m, -1] && NeQ[2*m + p + 1, 0] &&  !LtQ[m, n, -1] && IntegersQ[2*m, 2*n, 2*p]

Rubi steps

\begin {align*} \int \frac {(g \cos (e+f x))^{3/2}}{(a+a \sin (e+f x))^{3/2} (c-c \sin (e+f x))^{3/2}} \, dx &=-\frac {2 (g \cos (e+f x))^{5/2}}{f g (a+a \sin (e+f x))^{3/2} (c-c \sin (e+f x))^{3/2}}+\frac {\int \frac {(g \cos (e+f x))^{3/2}}{\sqrt {a+a \sin (e+f x)} (c-c \sin (e+f x))^{3/2}} \, dx}{a}\\ &=-\frac {2 (g \cos (e+f x))^{5/2}}{f g (a+a \sin (e+f x))^{3/2} (c-c \sin (e+f x))^{3/2}}+\frac {2 (g \cos (e+f x))^{5/2}}{a f g \sqrt {a+a \sin (e+f x)} (c-c \sin (e+f x))^{3/2}}-\frac {\int \frac {(g \cos (e+f x))^{3/2}}{\sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}} \, dx}{a c}\\ &=-\frac {2 (g \cos (e+f x))^{5/2}}{f g (a+a \sin (e+f x))^{3/2} (c-c \sin (e+f x))^{3/2}}+\frac {2 (g \cos (e+f x))^{5/2}}{a f g \sqrt {a+a \sin (e+f x)} (c-c \sin (e+f x))^{3/2}}-\frac {(g \cos (e+f x)) \int \sqrt {g \cos (e+f x)} \, dx}{a c \sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}}\\ &=-\frac {2 (g \cos (e+f x))^{5/2}}{f g (a+a \sin (e+f x))^{3/2} (c-c \sin (e+f x))^{3/2}}+\frac {2 (g \cos (e+f x))^{5/2}}{a f g \sqrt {a+a \sin (e+f x)} (c-c \sin (e+f x))^{3/2}}-\frac {\left (g \sqrt {\cos (e+f x)} \sqrt {g \cos (e+f x)}\right ) \int \sqrt {\cos (e+f x)} \, dx}{a c \sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}}\\ &=-\frac {2 (g \cos (e+f x))^{5/2}}{f g (a+a \sin (e+f x))^{3/2} (c-c \sin (e+f x))^{3/2}}+\frac {2 (g \cos (e+f x))^{5/2}}{a f g \sqrt {a+a \sin (e+f x)} (c-c \sin (e+f x))^{3/2}}-\frac {2 g \sqrt {\cos (e+f x)} \sqrt {g \cos (e+f x)} E\left (\left .\frac {1}{2} (e+f x)\right |2\right )}{a c f \sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.73, size = 92, normalized size = 0.52 \[ -\frac {2 (g \cos (e+f x))^{5/2} \left (\sin (e+f x)-\sqrt {\cos (e+f x)} E\left (\left .\frac {1}{2} (e+f x)\right |2\right )\right )}{c f g (\sin (e+f x)-1) (a (\sin (e+f x)+1))^{3/2} \sqrt {c-c \sin (e+f x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[(g*Cos[e + f*x])^(3/2)/((a + a*Sin[e + f*x])^(3/2)*(c - c*Sin[e + f*x])^(3/2)),x]

[Out]

(-2*(g*Cos[e + f*x])^(5/2)*(-(Sqrt[Cos[e + f*x]]*EllipticE[(e + f*x)/2, 2]) + Sin[e + f*x]))/(c*f*g*(-1 + Sin[
e + f*x])*(a*(1 + Sin[e + f*x]))^(3/2)*Sqrt[c - c*Sin[e + f*x]])

________________________________________________________________________________________

fricas [F]  time = 0.51, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {\sqrt {g \cos \left (f x + e\right )} \sqrt {a \sin \left (f x + e\right ) + a} \sqrt {-c \sin \left (f x + e\right ) + c} g}{a^{2} c^{2} \cos \left (f x + e\right )^{3}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*cos(f*x+e))^(3/2)/(a+a*sin(f*x+e))^(3/2)/(c-c*sin(f*x+e))^(3/2),x, algorithm="fricas")

[Out]

integral(sqrt(g*cos(f*x + e))*sqrt(a*sin(f*x + e) + a)*sqrt(-c*sin(f*x + e) + c)*g/(a^2*c^2*cos(f*x + e)^3), x
)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (g \cos \left (f x + e\right )\right )^{\frac {3}{2}}}{{\left (a \sin \left (f x + e\right ) + a\right )}^{\frac {3}{2}} {\left (-c \sin \left (f x + e\right ) + c\right )}^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*cos(f*x+e))^(3/2)/(a+a*sin(f*x+e))^(3/2)/(c-c*sin(f*x+e))^(3/2),x, algorithm="giac")

[Out]

integrate((g*cos(f*x + e))^(3/2)/((a*sin(f*x + e) + a)^(3/2)*(-c*sin(f*x + e) + c)^(3/2)), x)

________________________________________________________________________________________

maple [C]  time = 0.57, size = 363, normalized size = 2.06 \[ -\frac {2 \left (\cos \left (f x +e \right )+1\right )^{2} \left (g \cos \left (f x +e \right )\right )^{\frac {3}{2}} \left (-1+\cos \left (f x +e \right )\right )^{2} \left (1+\sin \left (f x +e \right )\right ) \left (\sin \left (f x +e \right )-1\right ) \left (i \sqrt {\frac {1}{\cos \left (f x +e \right )+1}}\, \sqrt {\frac {\cos \left (f x +e \right )}{\cos \left (f x +e \right )+1}}\, \cos \left (f x +e \right ) \sin \left (f x +e \right ) \EllipticE \left (\frac {i \left (-1+\cos \left (f x +e \right )\right )}{\sin \left (f x +e \right )}, i\right )-i \sqrt {\frac {1}{\cos \left (f x +e \right )+1}}\, \sqrt {\frac {\cos \left (f x +e \right )}{\cos \left (f x +e \right )+1}}\, \cos \left (f x +e \right ) \sin \left (f x +e \right ) \EllipticF \left (\frac {i \left (-1+\cos \left (f x +e \right )\right )}{\sin \left (f x +e \right )}, i\right )+i \sqrt {\frac {1}{\cos \left (f x +e \right )+1}}\, \sqrt {\frac {\cos \left (f x +e \right )}{\cos \left (f x +e \right )+1}}\, \sin \left (f x +e \right ) \EllipticE \left (\frac {i \left (-1+\cos \left (f x +e \right )\right )}{\sin \left (f x +e \right )}, i\right )-i \sqrt {\frac {1}{\cos \left (f x +e \right )+1}}\, \sqrt {\frac {\cos \left (f x +e \right )}{\cos \left (f x +e \right )+1}}\, \sin \left (f x +e \right ) \EllipticF \left (\frac {i \left (-1+\cos \left (f x +e \right )\right )}{\sin \left (f x +e \right )}, i\right )-\cos \left (f x +e \right )+1\right )}{f \left (a \left (1+\sin \left (f x +e \right )\right )\right )^{\frac {3}{2}} \left (-c \left (\sin \left (f x +e \right )-1\right )\right )^{\frac {3}{2}} \sin \left (f x +e \right )^{5} \cos \left (f x +e \right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((g*cos(f*x+e))^(3/2)/(a+a*sin(f*x+e))^(3/2)/(c-c*sin(f*x+e))^(3/2),x)

[Out]

-2/f*(cos(f*x+e)+1)^2*(g*cos(f*x+e))^(3/2)*(-1+cos(f*x+e))^2*(1+sin(f*x+e))*(sin(f*x+e)-1)*(I*sin(f*x+e)*cos(f
*x+e)*EllipticE(I*(-1+cos(f*x+e))/sin(f*x+e),I)*(1/(cos(f*x+e)+1))^(1/2)*(cos(f*x+e)/(cos(f*x+e)+1))^(1/2)-I*E
llipticF(I*(-1+cos(f*x+e))/sin(f*x+e),I)*(1/(cos(f*x+e)+1))^(1/2)*sin(f*x+e)*cos(f*x+e)*(cos(f*x+e)/(cos(f*x+e
)+1))^(1/2)+I*EllipticE(I*(-1+cos(f*x+e))/sin(f*x+e),I)*(1/(cos(f*x+e)+1))^(1/2)*(cos(f*x+e)/(cos(f*x+e)+1))^(
1/2)*sin(f*x+e)-I*EllipticF(I*(-1+cos(f*x+e))/sin(f*x+e),I)*sin(f*x+e)*(1/(cos(f*x+e)+1))^(1/2)*(cos(f*x+e)/(c
os(f*x+e)+1))^(1/2)-cos(f*x+e)+1)/(a*(1+sin(f*x+e)))^(3/2)/(-c*(sin(f*x+e)-1))^(3/2)/sin(f*x+e)^5/cos(f*x+e)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (g \cos \left (f x + e\right )\right )^{\frac {3}{2}}}{{\left (a \sin \left (f x + e\right ) + a\right )}^{\frac {3}{2}} {\left (-c \sin \left (f x + e\right ) + c\right )}^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*cos(f*x+e))^(3/2)/(a+a*sin(f*x+e))^(3/2)/(c-c*sin(f*x+e))^(3/2),x, algorithm="maxima")

[Out]

integrate((g*cos(f*x + e))^(3/2)/((a*sin(f*x + e) + a)^(3/2)*(-c*sin(f*x + e) + c)^(3/2)), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {{\left (g\,\cos \left (e+f\,x\right )\right )}^{3/2}}{{\left (a+a\,\sin \left (e+f\,x\right )\right )}^{3/2}\,{\left (c-c\,\sin \left (e+f\,x\right )\right )}^{3/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((g*cos(e + f*x))^(3/2)/((a + a*sin(e + f*x))^(3/2)*(c - c*sin(e + f*x))^(3/2)),x)

[Out]

int((g*cos(e + f*x))^(3/2)/((a + a*sin(e + f*x))^(3/2)*(c - c*sin(e + f*x))^(3/2)), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((g*cos(f*x+e))**(3/2)/(a+a*sin(f*x+e))**(3/2)/(c-c*sin(f*x+e))**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________